Contribution from the Department of Chemistry, University of Frankfurt/Main, West Germany

Tetranuclear Complexes of Trigonal-bipyramidal Copper(II). III.¹ Eletcronic and Infrared Spectra

H. tom Dieck

Received September 16, *1972*

Electronic spectral data of forty μ *-Oxo-hexa-* μ *-halo*geno copper complexes $Cu₄OX₆L₄$ (X = halide, L = *neutral or anionic ligand) with the metal in trigonalbipyramidal coordination are given. Two absorptions about 18 and 12 kK are assigned to the two ligand field transitions, the two other absorpfions (for neutral complexes) are of charge transfer type* $(X \rightarrow Cu)$ *. The FIR data for several complexes are presented and some tentative assignments made.*

Introduction

Pentacoordination is now a common feature in transition metal complex chemistry;² but most copper (II) complexes with this coordination number have been synthesized with chelating ligands? No systematic variation of ligands in trigonal-bipyramidal copper complexes has been performed because of the preferred tetra- or hexacoordination. Since 1966 complexes of general composition $Cu₄OX₆L₁$ (X = Halide, $L =$ neutral or anionic ligand) have been reported independently by several groups.⁴⁶ Their structures have unambiguously been determined by several single crystal x-ray studies and contain a central 0x0 anion, tetrahedrally coordinate by four copper(I1) ions, these being bridged in pairs by six halide \overline{ions} .⁷⁻¹¹

We recently published simple and yielding syntheses for numerous hexachloro and -bromo complexes, where one axial ligand is easily varied.¹ We now report infrared and electronic spectral data for these compounds.

Experimental Section

Preparation. Anhydrous copper(II) chloride or

(1) II Part: H. tom Dieck and H.P. Brehm, *Chem. Ber.*, 102, 3577
1969).
(2) L. Sacconi, *Pure Appl. Chem.*, 17, 95 (1968) and lit. cited there.
(3) M. Ciampolini in: Structure and Bonding, Vol. 6. 1969 Springer-

Verlag.

(4) J.A. Bertrand and J.A. Kelley, *J. Amer. Chem. Soc.*, 88, 4746

(5) H. Bock, H. tom Dieck, H. Pyttlik, and M. Schnöller, Z.

(5) H. Bock, H. tom Dieck, H. Pyttlik, and M. Schnöller, Z.

(6) C.M. Harris and E.

(7) B.T. Kilboum and I.D. Dunltz. Inorg. *Chim. Acta, I, 209* (1967). *(8) 1.A.* Bertrand, fnorg. *Chem.. 6, 495* (1967). (9) I.A. Bertrand and J.A. Kelley, lnorg. *Chem., 8, 1982* (1969).

bromide and copper(I1) oxide are refluxed with the exclusion of moisture in donor solvents like methanol, acetone or acetonitrile. From concentrated alcoholic solutions complexes of analytical composition Cu₄O- $(Hal)_{6}(CH_{3}OH)_{6}$ crystallize, which loose more than two moles of methanol when heated to 60-80" in vacua. To accelerate the reaction an excess of cupric oxide (the theoretical ratio CuO: CuX_2 is 1:3) is recommended, which is filtered off after 2-4 hrs. re fluxing. For the preparation of complexes Cu.OX.L. with L other than the solvent, the filtered solution is diluted with ether or ether/acetone and he ligand slowly added as diluted solution, too, to avoid precipitation.

Careful work gives analytically pure and crystalline material of dark yellow to black colour depending on crystal size and axial ligand L. All complexes not described previously' have been prepared by this improved method, in general with acetone as solvent.

Most compounds are hydrolysed in moist air, some are rather sensitive to heat.

Spectra. Electronic spectra where recorded with a CARY 14 in chloroform or as polycrystalline material in Nujol mull. Very good spectra where obtained, as chequed with the corresponding solution spectra, when a sample, finely dispersed in Nujol, was brought on a filter paper, with a Nujol-treated paper on the reference side, too.¹² Good results were also obtained with grinding the samples on an etched quartz plate. Both plates or papers were placed at the entrance of the detector housing.

Infrared spectra where throughout recorded as Nujol/ PFE mulls. KBr pellets were discarded because of the simple exchange reaction bromide ion vs. axial ligand.

IR-spectra were recorded with a Perkin-Elmer 325 spectrometer, far infrared data were taken with a Beckman IR-11.

Electronic Specfral Data. The solubilities of the tetranuclear complex are quite different, depending on the axial ligand L and only to a small extend on the bridging halogen X. The best solvent for quantitative absorption measurements in the visible and near ultraviolet region was chloroform. The solubi-

⁽¹⁰⁾ J.A. Bertrand and J.A. Kelley, *Inorg. Chim. Acta*, 4, 526
1970).
(11) N.S. Gill and M. Sterns, *Inorg. Chem.*, 9, 1619 (1970).
(12) G. Dyen J.G. Hartley, and L.M. Venanzi, *J. Chem. Soc.*
London), 1965, 1293.

lity of the neutral complexes was sufficient, ligand
exchange reaction were not observed, osmometric measurements showed no dissociation. Several complexes were recrystallized from the solvent to prove its inertness.

Table I gives absorption maxima and molar extinc-

Table I. Solution spectra of tetranuclear complexes $Cu_1OX_4(Ligand)$, $(v_m$ in cm⁻¹; ε_m in 1000 cm²/mole).

		νı	v_{2}	v, b	ν. (E)
Nr.	Ligand	(ϵ_1)	(ϵ_2)	(ϵ_3)	
	Cu ₄ OCl ₄ (Ligand),			28170	38460
I	pyridine	11300 (1120)	13330 ^a (1030)	(3380)	(19600)
П	2-methyl-pyridine	10870b	13610	27780	38460 c
		(440)	(720)	(4640)	(18400)
III	2-chloro-pyridine	10420 (700)	12820 (720)	27780 (3220)	37040 ^d (18300)
IV	3-methyl-pyridine	11170	13250 ^a	27780	37740
		(1060)	(980)	(4840)	(53000)
V	4-methyl-pyridine	11300	13250 ^a	28170	38460
VI	quinoline	(1100) 10990	(1020) 13330	(4800) 27400	(62000) 33900e
		(550)	(750)	(1500)	(27400)
VII	diisopropylcarbodiimide	10580	12660	27780	37040
		(820)	(720)	(3000)	(12800)
VIII	N-cyano-pyrrolidine	10530 (810)	12580 (740)	27780 (2660)	36360 (15500)
IX	acetonitrile	10580	12580	28170	37040
		(750)	(690)	(2100)	(15200)
X	phenylacetonitrile	10360	12500 (800)	28170 (2400)	37040 (15700)
XI	benzonitrile	(840) 10470	12500	27400	31950
		(770)	(720)	(3000)	(7500)
XII	tetramethylurea	10360	12420	28170	36360
XIII	N.N-dimethylacetamide	(870)	(860) 12500	(2650)	(15500)
		10360 (890)	(840)	27780 (2610)	35710 (41500)
XIV	dimethylsulfoxide	10420	12820		36360
		(630)	(600)		(10000)
XV	acetone	10360 (680)	12660 (620)	28990 (2800)	37740 (19500)
XVI	methanol	10530	12500	28170	37040
		(640)	(590)	(1680)	(11200)
XVII	triphenylphosphinoxide	10200	12500		— 1
		(600)	(600)		
	Cu ₄ OBr ₆ (Ligand) ₄				
XVIII	pyridine	11100 (1760)	13160 ^a	21280	32260
XIX	2-methyl-pyridine	10640 ^b	(1670) 13420	(2100) 24390	(20200) 31750
		(530)	(1080)	(5040)	(15600)
XX	2-chloro-pyridine	10310	12270	22730	32260
XXI	3-methyl-pyridine	(1430) 11110	(1350) 13160 ^a	(3120) 21280	(15700)
		(1730)	(1660)	(1220)	32790 (15000)
XXII	4-methyl-pyridine	11110	13160 ^a	21740	32260
XXIII		(1760)	(1700)	(2160)	(20300)
	quinoline	10750 (660)	13330 (1070)	23810 (3500)	∍ 32260 (27000)
XXIV	quinoxaline	10100	12350	22730	32260
		(750)	(1170)	(1960)	(28000)
XXV	diisopropylcarbodiimide	10310	12420	22730	32260
XXVI	N-cyano-pyrrolidine	(1450) 10310	(1350) 12270	(1590) 22220	(16600) 32260
		(1560)	(1470)	(1830)	(19800)
XXVII	acetonitrile	10260	12200	22730	32260
XXVIII	tetramethylurea	(1480) 10260	(1420) 12270	(1750) 23810	(17900)
		(1420)	(1340)	(2300)	32260 (16700)
XXIX	N,N-dimethylacetamide	10260	12200	22200	32260
XXX	dimethylsulfoxide	(1550)	(1490)	(1550)	(17300)
		10310 (1600)	12200 (1540)	22200 (1580)	32260 (18200)
XXXI	methanol	10310	12120	22200	32260
		(1470)	(1440)	(1440)	(16600)

^a further shoulder at 23000 (X = Cl) or 18000 (X = Br), due to impurities of trivial complex with coordination number four.
^b shoulder; ^c further peak at 34480 (13600); ^d another shoulder at 35090 (17000); ^c sha

Table II. Solid spectra of tetranuclear complexes Cu_{(OX_aL₄ (in cm⁻¹).}

	Ligand	v_1	ν,	v_3 ^a	ν,
	CuOCLL				
	pyridine	11360	13160	27780	34480
и	2-methyl-pyridine	11490	12990	28170	38460 ^d
XIV	dimethylsufoxide	10310	12660	29410	37040
XVII	triphenylphosphinoxide	10420	12200	27780	37040
XXXII	pyridine-N-oxide	10640	12660	30300	38460
XXXIII	chloride (potassium)	9800	11900	29410c	37040
XXXIV	chloride (ammonium)	9520	11630	29410c	37040
XXXVII	chloride (TMA) d	9620	11760	29410c	37040
XVIII	bromide (TMA)	9710	11490	27030c	35710
XXXVIII	cyanide (TMA)	9520	11900	30300 c	36360
	CuOBr ₆ L ₄				
XXXV	pyridine	11240	12500	21280	31750
XXXIX	chloride (TMA)	10100	11490	20830	33330
XXXVI	bromide (TMA)	10300	11900	22950	30300

 a_{ν} , is, in general, only visible as a shoulder; b band at 34480; c in the salts another shoulder appears between ν_2 and ν_3 ; d TMA = Tetramethylammonium cation.

tion coefficients for the first four maxima or shoulders. The two long wavelength absorptions overlap to an extend that v_m and ε_m values cannot be taken "By inspection". For all spectra the values v_1 , ε_1 , v_2 , and ϵ_2 have been obtained by graphic Gaussian analysis. As the bands at higher energies are unimportant for the interpretation of the ligand field characteristics (and as the spectra are not very well resolved in the charge-ransfer part) we renounced to make such an analysis in this part too. ε_m values are those taken from the recorded spectrum.

The salt-like complexes with anionic ligands L are unsoluble in chloroform. Solid spectra with a modified "grease-spot" method¹² were as well resolved as the solution spectra. This is another indication that no dissociation or exchange occurs in solution. Solid state spectra could not be taken in KBr pellets because the large excess of bromide ion leads to a substitution of some labile axial ligands."

Figure 1. Electronic Spectra of complexes VI, VII and XV in chloroform solution.

Table II gives values for solid state spectra of anionic complexes and neutral complexes (for comparison with solution-spectra of Table I).

Figures 1 and 2 give some representative solution spectra of chloro- and bromo complexes, while Figure 3 shows the solid spectra of two anionic complexes in comparison to the solid spectrum of the pyridine complex I.

Figure 2. Electronic spectra of bromo complexes XXIV, XXIX and XXX1 in chloroform solution.

The first double band v_1 , v_2 is influenced more by the nature of the axial ligand than by the bridging halide, while v_3 and v_4 characteristically depend on this latter.

If one defines the total width of the v_1, v_2 -double band as the difference between most separated points

(13) A long wavelength shift of v_i and v_2 was observed for XVII when the solid spectrum was taken in a KBr pellet.⁸ This is not observed with our method. here no ligand exchange can occur.

Table III. Orbital representation in C_{3r} (D_{3h}).

* normalizing factors omitted; 1, 2, 3 are the three equatorial halide ligands, O (oxygen) and L (ligand) are the axial ones.

ligand ligand
(equat.) (axial) \mathbf{v} Compound $\overline{$ (equat.) (1) (2) Lit. $\begin{array}{ccc} N & N \\ S & N / Br \end{array}$ [Cu(NH₃)2(NCS)3]
[Cu(Tri-S-N)Br]* 12800 14500 17 N 12800 14800 19 (390) (240) N N/O
N N/O
Cl N/O [Cu(Me,tren)NO₃]⁺ 11200 14300 19 11200 13800 19
11300 13300 1390 Cu(Mestren)ClO.]+ N N/ Cl N/ 11300 13300
(280) (260) $\text{Cu} \text{O} \text{Br}$. (280) (260) (260)
Cu_tOBr_s(py)_s . Br N/O 11100 13160 (400) (420)
[Cu(Me,tren)Br] + N N / Br 10400 13300 19 (450) (210)
Br 11900 [Cu_tOBr₁₀] $CuOCI₁₀$ ¹ 11800 $[CuCl_s]$ Cl Cl 8300 10400 14,18 9000 11000

Table IV. Absorptions (and extinction coefficients) v_1 and v_2 for trigonal-bipyramidal copper(II) complexes.

of the individual bands, where $\epsilon = 1/2 \epsilon_{\text{max}}$, typical values of $4000-4500$ cm⁻¹ are obtained. Bulky ligands like the 2-substituted pyridines or quinoline show total widths of $5000-5800$ cm⁻¹. This is an indication of steric interferences, which might lift the degeneracy of electronic levels, as will be discussed later.

In the third figure additional shoulders resp. maxima are clearly recognisable for the anionic species between v_2 and v_4 .

Typical differences in the electronic spectra of complexes Cu₄OX₆L₄ with trigonal-bipyramidal coordina-

Figure 3. Solid spectra of complexes I, XXXV and XXXIX. (Extinction is to an arbitrary scale).

6"' *Inorganica Chimica Actu* 1 7: 3 1 *September, 1973*

Figure 4. Comparison of electronic spectra of CuOX,L, and CuCl₂L₂ (L = dimethylsulfoxide) in chloroform solution.

 t_{total} complexes $C_1 \times I$ with (distorted) square planar complexes canzel with (astorted) square planar coordination are demonstrated in Figure 4. There is one weaker band in the $11000/cm$ region with a shoulder on the long wavelength side and, characteristically, one extra sharp absorption at about 21-23000/cm for chloro complexes and about 17-18000/cm for bromo complexes, indicating charge-
transfer type absorptions.

 T , T and T and T and T are very to be very typical. Fire v_1 , v_2 double band seems to be very typical. for pentacoordinated copper(II). Except for $\lceil \text{CuBr}_5 \rceil^{-3}$, where the broad band about $8700/cm$ was not resolved,¹⁴ all other trigonal-bipyramidal copper compounds show two absorptions (see Table IV).

Discussion

The tetranuclear complexes have been shown to contain four almost independent copper(II) ions. B_{max} Indian, and Hatfield's determined the coupling arries, riman, and riament determined the coupling instant for the tetraneural arrangement of copper $\sum_{n=1}^{\infty}$ with $n = -10$ cm and $\sum_{n=1}^{\infty}$ in $\sum_{n=1}^{\infty}$ contains the magnetic easurements snew a sugnit increase of the magnetic oment when the temperature is lowered and the most recent magnetic studies show a distinct difference between the anion XXXV and some neutral complexes (like XVII and XVIII),^{16a} which might be CACS (TRC ΔVII and ΔVIII), which inight be bital levels of the clusters. The site symmetry at each of the copper ions is

The site symmetry at each of the copper ions is
The high summature of the idealized Cu OXI C_{3v} . The high symmetry of the idealized $Cu₄OX₆L₄$ system (T_d) does not affect selection rules for C_{3v} . It is easily shown that any four tetrahedrally arranged vectors of C_{3v} (or vector pairs in E) will transform in T_d in a way that their representation contains at least one irreducible representation of type T being independent of Cartesian axes. Thus no transitions will occur within the cluster which prefer one direction or one copper ion. The idealized arrangement of atoms (or groups L) is shown in Figure 5.

gure 5. Idealized arrangement or atoms i_n C_1 Q_2 Q_3

(14) P. Day, Proc. Chem. Soc. (London), 18 (1964).
(15) J.A. Barnes, G.W. Inman, and W.E. Hatfield, *Inorg. Chem.*,
), 1725 (1971).
(16) E. Sinn, Wellington, New Zeland, private communication:
rformed measurements with se

To compare our spectral data with other C_{3v} and D_{3h} copper (II) complexes orbitals are listed as to their representation in these groups in the Table III.

Under the assumption of equal bond length and neglecting π -bonding the ²D term of the cupric ion splits according to the scheme given.¹⁷

Figure 6. Splitting of the 2D term in trigonal fields.

In C_{3v} two allowed ligand field transitions are to be expected, ${}^{2}E^{(1)} \leftarrow {}^{2}A_{1}$ and ${}^{2}E^{(2)} \leftarrow {}^{2}A_{1}$. It is interesting to compare this with the transitions in D_{3h} . transition of lower energy $E' \leftarrow A_1'$ should be symmetry-allowed, while $E'' \leftarrow A_1'$ should be forbidden. This fact has led to considerable confusion in the interpretation of the ligand field spectra of cupric ions in trigonal fields. As shown in Table IV two long wavelength transitions (of almost equal intensity have been observed for the pentachlorocuprate¹⁸ and other D_{3h} complexes¹⁷ as well as for Ciampolini's complexes with tripod ligand.^{3,19}

The accuracy of the data in Table IV should not be over-estimated. The two broad bands overlap strongly, so that appreciable differences occur when the maxima are determined either by inspection or by Gaussian analysis. Besides, in the case of $[CuCl₅]$ ³⁻ aussian analysis. Desiues, in the ease of Leading strong temperature appendence was observed. So viously the variation of the three equatorial ligands is less effective than the variation of the axial ligands; the same holds for the values of Table I.

In trigonal fields we expect two ligand field transin ingunal huius we expect two ngand huid transcribed to these transitions.^{18,20} On the other hand calculations on $[CuCl₅]³⁻$ with the simple point charge model and more sophisticated treatments place the first ligand field transition at much lower energies.²¹⁻²³ But down to 5500 cm^{-1} we could not detect another absorption band, although the low energy transition should have comparable or greater intensity than the high energy one, as long as one accepts the splitting p cuting the p at the set of p and p and p and p and p attern of Figure 6. Fins pattern assumes five equi-
 $\frac{1}{2}$ in their modified Stain Itganus. Thament of an in their mounted Wolfsberg-Helmholz treatment of the pentachlorocu-
prate(II) ion started with Cu-Cl interatomic distances given by Mori.²⁴ Bernal et al^{25,26} revised these data

(17) R.C. Slade, A.A.G. Tomlinson, B.J. Hataway, and D.E.

lling, *J. Chem. Soc.* (A), 61 (1968).

(18) G.C. Alten and N.S. Hush, *Inorg Chem.*, 6, 4 (1967).

(19) M. Ciampolini, J. Gelsomini, and N. Nardi, *Inorg. Chim.*

1181 (1969).

(23) P. Day and C.K. Jørgensen, *J. Chem. Soc.*, 6226 (1964).

(24) M. Mori, *Bull. Chem. Soc. Japan*, 34, 295 (1961).

(25) I. Bernal, N. Elliott, R.A. LaLancette, and T. Brennan, 11th

CCC, Haifa 1968, Pro

Dieck 1 *Tefranuclear Complexes of Trigonal-bipyramidal Copper*

and showed the axial bonds with 2.296 A to be much shorter than the equatorial bonds (2.391 A). Obviously a one-parameter MO method as previously used by Day and Jørgensen²³ for this problem cannot take into account these short bonds. Bertrand and Kelley found an even shorter axial Cu-Cl bond in the Cu₄OCl₁₀⁴⁻ ion (XXXV) (2.17 Å; 2.25 Å; two independent molecules in the unit cell).⁹

Recently Ludwig and Textor²⁷ described the electronic spectra of trigonal-planar halogenocuprates(II) $[CuX_3]$ ⁻ in solution. These can be regarded as one extreme in the trigonal ligand fields, with the axial field equal to zero, the other extreme would be linear L-Cu-L, with no equatorial field. The shortened axial bonds in trigonal-bipyramidal complexes tell us that relntiv orbital energies will be closer to the latter extreme than to the former. In Figure 7 a qualitative representation of orbital energies is given depending on the relative axial vs. equatorial field strength.

Figure 7. Dependence of orbital energies (schematically) on relative axial vs. equatorial field strength The dashed line gives the situation for five equidistant ligands).

While Ludwig and Textor have shown the situation on the left side of Figure 7 to occur, the situation in our complexes with shorter axial bonds is of course at the right side of the figure.

Here we approach the situation, where the two eorbitals cross. But of course the corresponding E states will not have the same energy. The almost constant energy difference of the two bands v_1 and v_2 might be caused by configuration interaction. The almost equal intensities can also be rationalized in terms of this mixing.

The slightly enhanced redox stability of trigonalbipyramidal complexes is a consequence of the ${}^{2}A_1$ ground state, which makes the d_{z} more antibonding than the $d_{x^2-y^2}$ in the other coordination geometries.

The absorptions v_3 and v_4 (and occasionally further bands) give also some indication for this. The three equatorial halogens have one p-type lone pair each (p_{equatorial}, p_e). The others are involved in σ -bonds, so from these long wavelength CT transitions are not to be expected. As shown in Table III the three p_e orbitals give the representations $A_2 + E$. As there is no metal orbital of representation A_2 , the A_2 halogen orbital is nonbonding with respect to the

(27) W. Ludwig and M. Textor, Helv. *Chim. Acta, 54,* 1143 (1971).

metal and antibonding with respect to a single halide lone pair (interligand destabilisation). On the other hand the E halogen orbital is stabilized by interaction with metal orbitals of like symmetry. Thus we expect two halogen-to-metal charge transfer transitions ${}^{2}A_{2} \leftarrow {}^{2}A_{1}$, which is symmetry-forbidden, and ${}^{2}E \leftarrow {}^{2}A_{1}$ which is of higher energy and symmetry allowed. The absorptions v_3 and v_4 are therefore assigned to these two transitions; v_3 in practically all cases appears as a rather weak shoulder about lOOOO/cm to lower energies relative to v_4 , which is at 38000/cm for chloro complexes and at 32000/cm for the bromo series. The anionic complexes $[Cu₄OX₆Y₄]⁴⁻ (Y =$ halide) should show another CT transition stemming from the degenerate pair of p-orbitals at the axial halide. $18,28$ This CT absorption is expected between v_3 and v_4 because this pair of p-orbitals does not suffer interligand destabilisation $(p_c: a_2)$ nor stabilisation $(p_c: e)$ like the equatorial halide lone pairs. This third CT transition occurs at 26350-27000 cm for the $[Cu₄OC]₁₀$ ⁴⁻ depending on the cation. For $[Cu₄OBr₁₀]⁴⁻$ this shoulder is at 20400 cm. For K₄Cu₄OCl₁₀, XXXIII, the strong band at 37040 (v_4) is split. The asymmetric $Cu₄O$ stretching frequency in the infrared is split, too. The rather small cation potassium migth be responsible for a distortion of the anionic chromophore.

Infrared spectral data. In the complex $Cu₄OX₆L₄$ the infrared active vibrations assignable to the coordinated ligand L do not differ significantly from other transition metal complexes with these ligands.'9 One exception is of course Bertrand's triphenylphosphinoxide complex,⁸ where the $P=O$ frequency is raised. We are especially interested in the vibrations of the central $Cu₄OX₃$ part of T_d symmetry. The simplest molecule available is the $[Cu₄OX₁₀]⁴⁻$ system (with the infrared inactive potassium cation). From the possible 39 vibrations only 7 are infrared-active, belonging to the triply degenerate representation T_2 . The representation of all vibrations contains:

$$
\Gamma = 3A_1 + 3E + 3T_1 + 7T_2
$$

An assignment of infrared bands via a normal coordinate analysis was not possible since the amount of data is unsufficient. Recording of Raman spectra with a Laser Raman spectrograph was not possible because of too much absorption at the position of the excitation energy,

In the spectrum of $K_4Cu_4OCl_{10}$ there is a triply split band around 560/cm, which must thus be associated with the central oxygen.¹ This Cu_iO stretching vibration is very intense and is absent in any other simple copper complex and can thus be taken as diagnostic for the presence of this structure type, as there is only little variation with axial ligands. In cases of L being a very bulky ligand, the v_{Cu} is usually split or broadened.

If we compare the $[Cu₄OC₁₀]⁴⁻$ anion with the $[Cu₂Cl₆]²⁻$ we find bridging and terminal chloride in both of them, the $Cu-Cl(t)$ distances are rather si-

(28) R.A. Howard and P.D. Kceton, *Spectrochim. Ada.* 22, 1211 (1966). (29) H.P. Brehm, Ph.D. Thesis, Univ. of Frankfurt. 1970.

milar.^{9,31} In the latter the Cu-Cl(t) stretching vibration appears just above 300/cm, while as expected the Cu-Cl(μ) vibration is at lower frequencies.³³ For the anions XxX111, XXXIV and XXXV with terminal chloride we find a strong band at 290/cm, while in the neutral complexes the first band assignable to the Cu-Cl(μ) absorption appears at 250/cm.^{18,25,30} In the bromo compounds this bands is found slightly below 200/cm. The 250/cm band in the chloro series is sometimes accompanied by shoulders or it is—like the $200/cm$ band for most bromo compounds--resolved and broad.

We showed above that for the tetrahedral molecule $Cu₄OX₆L₄$ (with L a point mass) there are seven IRactive vibrations, all of which are of presentation Tz, like the Cartesian coordinates. A simple description of the triply degenerate vibrations can be given which considers but one of the coordinates.

The system $Cu₄OX₅L₄$ contains four independent sets of atoms: The central oxygen (O), the four copper atoms (Cu), the bridging halides (X) and the ligand's coordinating atom (L). Along one axis there are two possible movements designed with $+$ (parallel) and - (antiparallel). Thus the movements of all atoms can be described as the variation with repetition V_R of two elements n (these are: $+$ and $-$) to the fourth class p (four sets of atoms):

$V_R^p(n) = n^p = 2^4 = 16$

Any two of these are equivalent (because $+$ and $-$

(30) **D.M. Adams and P.1. Lock, I.** *Chem. Sot.* **(London) (A), 620 (1967). (31) D. Willet, C. Dwiggins, jr.. R.F. Kruh, and R.E. Rundle, \. Chem.** *Phys.,* **38, 2429 (1963).** Table VI. Characterization of movements of type $T₂$ relative to one Cartesian axis.

can be interchanged), thus leaving eight independent movements, which are summarized in Table VI. One of these is of course a translational movement, the other seven are related to the seven normal vibrations.

Linear combinations of the relative movements of Table VI will give the normal vibrations, so the characterisation is only an indication of which force constant dominates.

Although the interchange of chloride and bromide in the axial and equatorial positions (relative to copper) might give further information, the resolution of spectra was unsufficient in the far infrared to assign seven fundamentals with accuracy.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft, Bad Godesberg, and the Fonds der Chemischen Industrie. I thank Dr. H.P. Brehm for his help in measuring electronic spectra.